

AARHUS INSTITUTE OF ADVANCED STUDIES

Exploring past economies with HPC-enabled agent-based modelling

IZA ROMANOWSKA SIMON CARRIGNON TOM BRUGHMANS

 $(\mathbf{01})$

 $(\mathbf{05})$

Global Pandemic

A new disease ravaged cities and the countryside across the world.

Global Pandemic

Climate change

(05)

A new disease ravaged cities and the countryside across the world.

After two years of drought, unusually strong rains destroyed crops.

Global Pandemic

Climate change

Trade collapse

 $(\mathbf{05})$

A new disease ravaged cities and the countryside across the world.

After two years of drought, unusually strong rains destroyed crops.

The commercial exchange comes to a standstill. Supply chains disrupted.

Global Pandemic

Climate change

Trade collapse

Social discontent

 $(\mathbf{05})$

A new disease ravaged cities and the countryside across the world.

After two years of drought, unusually strong rains destroyed crops.

The commercial exchange comes to a standstill. Supply chains disrupted.

New sects emerge and more and more people turn to extreme forms of religion.

The winter of AD 166

Global Pandemic

Climate change

Trade collapse

Social discontent

A new disease ravaged cities and the countryside across the world.

After two years of drought, unusually strong rains destroyed crops.

The commercial exchange comes to a standstill. Supply chains disrupted.

New sects emerge and more and more people turn to extreme forms of religion.

The Ancient World

Battles and treaties Great personalities and their lives Innovations and discoveries How things looked like Local histories

What happened in the past?

By AnemoneProjectors (talk) (on Flickr) - CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=22928506

By James Gordon from Los Angeles, California, USA - Palmyra, Syria, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=22445791

The Ancient World

Economy and Trade **Resource Acquisition** Cultural Evolution Resilience and Climate Change Migration and Movement

How do human groups operate over long time periods?

By AnemoneProjectors (talk) (on Flickr) - CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=22928506

By James Gordon from Los Angeles, California, USA - Palmyra, Syria, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=22445791

Archaeology

Evolutionary Processes Human Origins, Roman Archaeology Lithics and Pottery

Complexity Science

Agent-based Modelling Long-term Trends in Socio-natural Dynamics Complex Adaptive Systems

Computer Science

Algorithmics High Performance Computing Software Sustainability

THE ROMAN EAST

THE ROMAN EAST

0

ITS: Italy and

Southern

France

THE ROMAN EAST

HOW INTEGRATED WAS THE ROMAN EAST?

FLOW OF GOODS

FLOW OF COMMERCIAL INFORMATION

Economy meets Culture

(04)

RESEARCH QUESTION

INDEPENDENT LEARNING

Traders independently change their tableware buying strategy NO ACCESS TO COMMERCIAL INFORMATION

UNBIASED SOCIAL LEARNING

Traders randomly copy the tableware buying strategy of another trader LIMITED ACCESS TO COMMERCIAL INFORMATION

SUCCESS-BIASED LEARNING

Traders copy the tableware buying strategy of the most successful trader FULL ACCESS TO COMMERCIAL INFORMATION

Economy meets Culture

(04)

HYPOTHESES

(05)

ECONOMIC EXCHANGE

1. TRADE with other traders based on your strategy

1.a Score for "success"

(05)

CULTURAL EXCHANGE

- 2. Learn/update strategy
- adapt your strategy independently (innovation)
- learn from the best (social learning -biased transm.)
- learn at random (social learning -unbiased transm.)

parameter	description	initial value
t	Total number of economic interactions	
ω	number of economic interactions per cultural interaction	S
CI	total number of cultural interactions	\mathcal{S}^*
μ	rate of innovation	S
λ	rate of social learning	S
N	total number of agents	500
μ_{max}	variance of innovation	S
λ_{str}	strength of bias (when social learning is biased)	S
n _{good}	number of types of goods (e.g. ESA, ESB,) produced and exchanged	3-6

(06)

EXPERIMENT DESIGN

Vast parameter space Limited input data No calibration dataset

By Mikael Sunnåker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll, Christophe Dessimoz - Approximate Bayesian computation (WebCite copy); wiki source for the articleSunnåker M, Busetto AG, Numminen E, Corander J, Foll M, et al. (2013) Approximate Bayesian Computation. PLoS Comput Biol 9(1): e1002803. doi:10.1371/journal.pcbi.1002803, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=23785336

(06)

APPROXIMATE BAYESIAN COMPUTATION

Runs the model until parameter values produce output that is similar to the data pattern The distribution of these parameter values is the posterior

parameter	description	initial value
t	Total number of economic interactions	S
ω	number of economic interactions per cultural interaction	S
CI	total number of cultural interactions	\mathcal{S}^*
μ	rate of innovation	S
λ	rate of social learning	S
N	total number of agents	500
μ_{max}	variance of innovation	S
λ_{str}	strength of bias (when social learning is biased)	S
n _{good}	number of types of goods (e.g. ESA, ESB,) produced and exchanged	3-6

Parameters	Priors	Description
μ	U(0, 1)	rate of innovation
μ_{max}	U(0, 10)	variance of innovation
λ	U(0, 1)	rate of social learning
λ_{str}	U(0, 10)	strength of social learning bias
t	$U^{*}(50, 1000)$	total number of economic interactions
ω	U*(1, 50)	number of economic interactions per cultural interaction

(06)

EXPERIMENT DESIGN

Vast parameter space Limited input data No calibration dataset

(07)

INDEPENDENT LEARNING

Suggests limited contact and economic integration.

Total number of Cultural Interactions

Rate of innovation

(07)

INDEPENDENT LEARNING

Relatively low rate of innovation, wide range of for the frequency of economic interactions

Total number of Cultural Interactions

ons Total number Economic Interactions

Rate of innovation

(07)

NUMBER OF ECONOMIC INTERACTIONS

The number of times agents go to the market to buy tableware during the whole simulation. The 75% HDR falls between 750 and 1700 economic interactions, i.e. 1.5 to 3.4 times per year.

Total number of Cultural Interactions

Rate of innovation

Economy meets Culture

(07)

NUMBER OF CULTURAL INTERACTIONS

The number of times agents had the opportunity to copy strategies from other agents. The 75% HDR falls between 63 and 140 cultural interactions, i.e. once every 7.9 to 3.6 years.

PLOS ONE

🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

Tableware trade in the Roman East: Exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation

Simon Carrignon , Tom Brughmans, Iza Romanowska

Published: November 25, 2020 • https://doi.org/10.1371/journal.pone.0240414

Economy meets Culture

(08)

HIGH PERFORMANCE COMPUTING

Three superpowers of ABM

 $(\mathbf{08})$

THE PRICE: EXTREMELY HIGH COMPUTATIONAL COST

Photo by Eugene Chystiakov on Unsplas

Model definition is intuitive:

- easy to understand dynamics
- familiar entities important for multidisciplinary projects

2

Enables us to capture emergent phenomena:

- weakening of standard axioms (full rationality, global knowledge, etc)

- communication, adaptation, evolution

3

Individual agency at the heart:

- heterogeneous population
- local circumstances

AGENT-BASED MODELING FOR ARCHAEOLOGY] Simulating the Complexity of Societies

IZA ROMANOWSKA COLIN D. WREN

STEFANUA, CRAETREE

del surre E

ABM how to

(09)

AGENT-BASED MODELLING FOR ARCHAEOLOGY: SIMULATING THE COMPLEXITY OF SOCIETIES. SANTA FE INSTITUTE PRESS

Photo by Elissar Haidar on Unsplash

@IZA_ROMANOWSKA IROMANOWSKA@AIAS.AU.DK

GOOGLE SCHOLAR ACADEMIA.EDU RESAERCHGATE

AIAS aias.au.dk/aiasfellows/izaromanowska/

