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Social relations @ scale

e State-of-the-art approaches

* Surveys
* Detailed but expensive and likely biased a
* Social media 2
* Allows new way of tracking social relations at a 2
scale, e.g., by Meta on their platforms a,
2 4 &
o a
* Problems with SOME plaforms 5
* Participation is selective Income? a
2 a

* Recent tephnolp%y and we cannot track long
changes in social fabric challow dats

* Datais very shallow - have to predict/infer
outcomes, e.g., income

(generated using ChatGPT)

* Monopoly of data — cannot share data
openly, and likely to pursue positive
reputation projects
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A nation-scale social network

* Following Van der Laan et al.
(2023)

* Construct a combined Coworkers

network from registry data Schoolmates

e Construct network for each Neighbors

year by merging layers Family and

household

(generated using ChatGPT)



Danish registry network

Neighbors
* Sample of 10 households within 50 meters (if there are any)

Colleague )

* Work in same place — using Danish population in November
* For large firms - random subsample of 100

= Structure?

School and classmate layer
* Enrolled in same educ. institution

Family layer
* firstand second degree family relations (e.g., cousin, grand-parent)
* basis of legal child-parent relationships (biological and adoptive)

Household layer
* same address (Stat. Denmark designation)



Dual representation

* Individual-centered: relations between individuals
* Bipartite: relationer via container nodes (e.g. schools)

* Employer-employee <> coworkers
 School-student <> schoolmates (and classmates)
* Neighborhood-residents <> neighbors



Our contributions

* Leverage dual representation to
* Obtain computational improvements
* Heterogeneous edge weights - more realistic networks

* Time dimension
* Aggregate layers across time — allow for connectivity to former schoolmates

* Patterns uncovered
* Life cycle and heterogeneous connectivity
* Interlayer spillover
* Realistic small world properties



Basic network properties



Linking statistics
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10 year time span
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Colleagues individuals
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Colleagues bipartite

Bipartite network

Containers



Connectivity

by layers
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New network properties



How to combine layers?

Flexible weights according to priors
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Likelihoods of connecting

Grows with container node size
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Connectivity overall

Are people six degrees of apart?
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Connection overlap:
are my links are also mutually linked?
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Do network layers interact?
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A Income - Time span: 0 years B Income - Time span: 10 years
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Outro



Further use and applications

* Data access and software

* regnet: A python package for analysis and network construction
* Data available through researcher access at Statistics Denmark

* More applications of data

* Social cohesiveness, segregation and access to social capital
* Social and match factors

* Institutional effects (schools, workplaces)
* Combination with exogenous shocks > peer effects

* Epidemiology and disease transmission
* Enrich network — survey of connections within layers



Thank you for listening!

e Contact: abn@sodas.ku.dk

* Please ask any questions, and thanks for your time!
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